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CONSTRUCTION OF THREE DIMENSIONAL SOLUTIONS FOR THE MAXWELL
EQUATIONS∗

A. YEFET† AND E. TURKEL‡

Abstract. We consider numerical solutions for the three dimensional time dependent Maxwell equations.
We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free
space in a box.
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1. Maxwell Equations in a Box. Let τ = ct = t/
√

µε and Z =
√

µ
ε . For the rest of this paper we

replace τ by t. The three dimensional time dependent Maxwell equations then are:
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We set Z = 1 in this paper.
A plane wave solution is given by

Hx = H0
x sin(ωt) sin(Ax + By + Cz)

Hy = H0
y sin(ωt) sin(Ax + By + Cz)

Hz = H0
z sin(ωt) sin(Ax + By + Cz)

Ex = E0
x cos(ωt) cos(Ax + By + Cz)

Ey = E0
y cos(ωt) cos(Ax + By + Cz)

Ez = E0
z cos(ωt) cos(Ax + By + Cz)

Substituting into the Maxwell equations this is a solution if

ω2 = A2 + B2 + C2(1.2)

0 = AH0
x + BH0

y + CH0
z(1.3)
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We also demand that

ωE0
x = H0

yC −H0
z B

ωE0
y = H0

z A−H0
xC

ωE0
z = H0

xB −H0
yA

2. Numerical Tests. We consider a case where H0
x = H0

y = H0
z = 1 and

A = π

B = −2π

C = π

ω =
√

6π

We use this exact solution as a basis for comparison in the box [0, 1/2]× [0, 1/4]× [0, 1/2] . We shall compare
two numerical methods: the Yee scheme [1] which is second order accurate in space and time and the Ty(2,4)
scheme [2, 3] which is second order accurate in time but fourth order accurate in space. In order for the
total error to be fourth order we must choose the time step small enough so that the temporal error does
not swamp the spatial error. This requires ∆t ∼ (∆x)2. If the error requirements are too severe then this
is inefficient and the leapfrog in time should be replaced by a fourth order Runge-Kutta method. However,
for the experiments in this paper we shall use the same leapfrog method for both schemes. Hence, both the
Yee scheme and the Ty(2,4) have the electric and magnetic variables at the same staggered locations both
in space and in time. The Yee scheme approximates the derivatives via the following approximation.
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A similar formula holds for the other variables shifted to other locations in each direction. The Ty(2,4)
scheme is an implicit compact scheme given by
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where A is defined the following way:

A =
1
24
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For the Yee scheme we choose ∆t = 4h
7 while for the Ty(2,4) scheme we choose ∆t ∼ h2 where h =

∆x = ∆y.
We measure the error in the L2 norm between the approximate and exact electric field in the ẑ-direction.

The Ty(2,4) behaves better than expected and gives almost fifth order accuracy. The Yee scheme gives a
second order accuracy as expected.
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scheme h ∆t t=10 reduction rate

Ty(2, 4) 1
20

1
400 3.62× 10−4

Ty(2, 4) 1
40

1
1600 1.1443× 10−5 31.6423 4.98

Ty(2, 4) 1
80

1
6400 3.5621× 10−7 32.1255 5.0056

Y ee 1
20

1
35 0.027

Y ee 1
40

1
70 7.3× 10−4 3.694 1.9028

Y ee 1
80

1
140 1.82× 10−4 4.0042 2.0015

Table 2.1

Comparison of the maximum errors in L2 norm
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Fig. 2.1. log10(error) For the Yee scheme.
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Fig. 2.2. log10(errors) For the Ty(2,4) scheme.
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Fig. 2.3. Log10(error) as a function of Log10(h) For the Yee and the Ty(2,4) schemes.
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